Neural Network-Assisted Fiber Tracking of Synthetic and White Matter DT-MR Images

نویسندگان

  • Luis M. San-José-Revuelta
  • Marcos Martín-Fernández
  • Carlos Alberola-López
چکیده

In this paper, a recently developed fiber tracking algorithm to be used with diffusion tensor (DT) fields acquired via magnetic resonance imaging (MRI) is improved and applied to real brain DT-MR images. The method performs satisfactorily in regions where branching and crossing fibers exist and offers the capability of reporting a probability value for the computed tracts. This certainty figure takes into account both the anisotropy and the information provided by all the eigenvectors and eigenvalues of the diffusion matrix at each voxel. In previous papers of the authors, a simpler algorithm was applied only to elementary synthetic DT-MR images. As now presented, this algorithm is now adequately used with more intricate synthetic images and is applied to real white matter DT-MR images with successful results. A novel neural network is used to estimate the main parameters of the algorithm. Numerical experiments show a performance gain over previous approaches, specially with respect to convergence and computational load. The tracking of white matter fibers in the human brain will improve the diagnosis and treatment of many neuronal diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Tracking of MR Tensor Fields Using a Multilayer Neural Network

In this paper, a recently developed fiber tracking algorithm to be used with diffusion tensor (DT) fields acquired via magnetic resonance imaging (MRI) is improved and applied to real brain DT-MR images. The method performs satisfactorily in regions where branching and crossing fibers exist and offers the capability of reporting a probability value for the computed tracts. This certainty figure...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas.

OBJECT The goal of this study was to use diffusion-tensor (DT) magnetic resonance (MR) imaging to track fibers combined with cortical stimulation mapping to delineate descending motor pathways. Subcortical localization of motor pathways in relation to a glioma may provide critical information to guide tumor resection and prevent surgical morbidity. METHODS Eleven adult patients harboring glio...

متن کامل

Software-based diffusion MR human brain phantom for evaluating fiber-tracking algorithms

Fiber tracking provides insights into the brain white matter network and has become more and more popular in diffusion MR imaging. Hardware or software phantom provides an essential platform to investigate, validate and compare various tractography algorithms towards a "gold standard". Software phantoms excel due to their flexibility in varying imaging parameters, such as tissue composition, SN...

متن کامل

Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles

We propose a new way for tracking brain white matter fiber bundles in diffusion tensor maps. Diffusion maps provide information about mobility of water protons in different directions. Assuming that diffusion is more important along axons, this information could lead to the direction of fiber bundles in white matter. Nevertheless, protocoles for diffusion image acquisition suffer from low resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007